
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Permanent grassland classifications predict agronomic and environmental
characteristics well, but not ecological characteristics
Geoffrey Mesbahia,b,⁎, Alice Michelot-Antalika, Jérémie Goulnika, Sylvain Plantureuxa
aUniversité de Lorraine, Inra, LAE, F-54000 Nancy, France
b Parc Naturel Régional des Vosges du Nord, 67290 La Petite Pierre, France

A R T I C L E I N F O

Keywords:
Phytosociology
Agricultural type
Functional type
Management
Biodiversity
Typology

A B S T R A C T

Permanent grasslands produce highly diverse ecosystem goods and services, which need to be easily assessed by
decision makers. Naturalists and agronomists classify grasslands in different ways to predict ecological, agronomic
and environmental characteristics of the grasslands. However, few studies have compared the prediction abilities
of these different classifications using the same botanical relevés, and none has explored the utility of combining
classifications. In this study, we attributed a grassland class from each of three classifications (phytosociological,
agronomic and functional) to 250 permanent grasslands in north-eastern France to predict 16 characteristics: nine
ecological, three agronomic and four environmental. We used statistical model selection to identify the classifi-
cation or combination of classifications that best predicted each characteristic. Our results showed great prediction
ability of agronomic classification, which created the best models for predicting agronomic (yield) and environ-
mental (management, elevation) characteristics. We also identified a strong prediction ability of combining two or
all three classifications to predict seven other grassland characteristics. However, grassland classifications did not
predict most of the ecological characteristics well. We can assume that phytosociological classification, despite its
mainstream use, predicts grassland characteristics less well than agronomic classification. We recommend com-
bining grassland classifications to improve rapid prediction abilities. This study provides new knowledge useful for
developing grassland classifications which meet the needs of agronomists and naturalists.

1. Introduction

Worldwide, permanent grassland is the main terrestrial ecosystem,
covering 26% of the world land area (FAO, 2019) and 28% of UE total
utilised agricultural area in 2013 (Eurostat, 2017). Permanent grass-
lands provide diverse ecosystem goods and services of global im-
portance, such as forage production, species habitat, pollination, water
purification, flood prevention and mitigation of global warming
through carbon storage (D’Ottavio et al., 2017). Provision of these
services is threatened by four main dangers: disappearance of grass-
lands (cultivation, degradation), underuse (abandonment), agricultural
intensification and climate change (Biró et al., 2013; Muller et al.,
1998; WallisDeVries et al., 2002; Young et al., 2005).

Conservation of grasslands and associated goods and services requires
strong policy, but grasslands differ and do not need equal protection.
Indeed, agronomic and ecological services provided by grasslands are
complex consequences of management choices, environmental con-
straints and botanical composition (Dumont et al., 2018; Michaud et al.,
2012). Decision-makers need simple tools such as grassland

classifications to assess or predict the levels of grassland services pro-
vided. At local scales, farmers and agronomists mainly need to predict
forage yield and quality, while naturalists are interested in ecological
values of grasslands. At regional, national and international scales, policy
makers and administrators need to assess trade-offs between economics
and the environment, and to design best policies. To solve these issues,
naturalists and agronomists have developed different grassland classifi-
cations, using divergent methods. These classifications simplify predic-
tion of grassland characteristics, which depend on the viewpoint and
method of study.

Naturalists have used phytosociology since the early 20th century to
classify vegetation communities and assess habitat conservation. The
development of phytosociological classification required botanical
relevés of all vascular species and a coefficient of abundance-dom-
inance for each species of each relevé (Braun-Blanquet, 1964). Phyto-
sociology is the mainstream method for classifying vegetation com-
munities as it can be applied to all ecosystems worldwide (e.g. Cheng
et al., 2013; Rodríguez-Rojo et al., 2017, 2001; Setubal and Boldrini,
2012), vegetation classes are arranged into a hierarchical system, and
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their names follow scientific rules (Dengler et al., 2008). Once devel-
oped, the use of phytosociological classifications requires only a com-
plete botanical relevé and less than an hour in each field. Phytoso-
ciology can also be used to predict agronomic characteristics, such as
forage quality, and environmental characteristics by using indicator
species (Petrovic et al., 2013); however, coefficients of abundance-
dominance correlate only weakly with each species’ percentage of total
grassland biomass (i.e. relative biomass) , which can skew assessment
of agronomic characteristics (Daget and Poissonet, 1971; Pittarello
et al., 2018). Naturalists use phytosociology frequently worldwide; in
the European Union, it is used to assess habitat conservation and define
priority habitats to protect faunal and floral biodiversity.

Agronomists have developed agronomic classifications since the
1950s to quickly assess forage yield and quality, as well as impacts of
practices on forage production and the environment (Michaud et al.,
2013). Complete knowledge of botanical diversity is needed to develop
a classification because effects of each plant species on animal pro-
duction depend on its prevalence in an animal’s diet (Diquélou et al.,
2003), but classification approaches may vary. Agronomic classifica-
tions provide accurate information about agronomic performances of
grasslands but are closely tied to the areas for which they were devel-
oped. Once developed, agronomic classifications can often be used
without botanical knowledge, but they do require knowledge about
agronomic practices, which needs to be collected when the classifica-
tions are developed. Doing so requires time, but can begin a discussion
between farmers and agricultural advisors. Moreover, agronomic clas-
sifications can be used to predict ecological characteristics such as
species richness and pollinator value (Hulin et al., 2011; Launay et al.,
2011), but not all classifications have been developed for this purpose.
Several agronomic classifications have been developed, especially in
western Europe, and they are used by a wide range of decision makers,
including agricultural advisors and farmers (Michaud et al., 2013).

More recently, during the 1990s, ecologists attempted to explain the
functioning of grassland ecosystems using functional traits of plants
(e.g. Lavorel and Garnier, 2002; Mouillot et al., 2013; Violle et al.,
2007). A functional trait is “any morphological, physiological or phe-
nological feature measurable at the individual level, … without re-
ference to the environment or any other level of organization” (Violle
et al., 2007). Agronomists applied this knowledge to permanent
grasslands to develop functional classifications, which are used to
predict grassland agronomic characteristics such as forage quality,
earliness and management flexibility. Dominant grass (Cruz et al.,
2010; Durante et al., 2012) and forb (Theau et al., 2017) species have
been classified by their functional traits, which are then used to classify
grasslands. Functional ecology has brought a fresh perspective to
ecology and agronomy, improved prediction of ecosystem goods and
services, such as fodder production or carbon and nitrogen cycling
(Carol Adair et al., 2018; Lavorel, 2013), and been particularly useful
for characterising community response to environmental change
(Lavorel and Garnier, 2002; Nock et al., 2016). Unlike agronomic
classifications, functional classifications are not restricted to the areas
for which they were developed (Cruz et al., 2010) and, once developed,
do not require great botanical knowledge: the relative biomass of the
grass and forb species classified is sufficient to classify the grassland
and predict its agronomic characteristics. Developing functional clas-
sifications, however, requires knowledge about functional traits of plant
species. These classifications are already used in France to help farmers
manage grasslands (Carrère et al., 2012).

The first objective of our study was to compare how phytosociolo-
gical, agronomic and functional classifications assess grassland char-
acteristics, as they use different methods and have different objectives.
Phytosociological classification’s main aim is to describe botanical as-
sociations, while agronomic classification focuses on predicting forage
yield and quality. In comparison, functional classification predicts
mechanisms (e.g. strategy for acquiring nutrients, development of plant
structure) that express themselves when exposed to environmental

variation. We hypothesised that each classification could predict certain
characteristics well: phytosociological for ecological characteristics,
agronomic for agronomic characteristics and functional for agronomic
and environmental characteristics.

Classifications are used to predict grassland ecosystem goods and
services, but usually only one classification approach is used to do so.
However, differences in classification objectives lead to divergent
methods for constructing classifications, which can cause classifications’
predictions of grassland characteristics to differ despite having similar
prediction potentials. From this perspective, the second objective of this
study was to investigate prediction capacities of combined grassland
classifications. To our knowledge, few studies have combined classifi-
cation approaches. Carrère et al. (2012) combined phytosociological
class, agronomic management and functional class to study potential
evolution from one grassland class to another (e.g. due to modifying
fertilisation or earliness of first use). Macedo et al. (2010) compared the
species prediction abilities of three classifications of dune plants: phy-
tosociological, dominant-strategy (Grime’s CSR theory) and functional.
They found that these classifications predicted plant species similarly but
differed in their predictions of plant response to disturbance. However,
Macedo et al. (2010) predicted ecological characteristics of dune com-
munities only, and neither of these two studies assessed the increase in
prediction accuracy provided by combinations of classifications. We
hypothesised that although each classification has strengths and weak-
nesses, combined classifications would create a new classification that
was more polyvalent and accurate at predicting grassland characteristics.

Using a sample of 250 permanent grasslands, we determined a phy-
tosociological, agronomic and functional class for each. We analysed the
prediction accuracy of each of the three classifications and explored
whether combining two or all three of them improved prediction of each
of 16 ecological, agronomic and environmental characteristics. Finally,
we determined whether one classification alone or a combination of
classifications could predict all 16 of the characteristics well.

2. Materials and methods

2.1. Site

The dataset consisted of 250 grasslands in the Vosges Mountains
(north-eastern France, 7000+ km2) (Fig. 1). Their elevations vary
greatly (170–1424 m a.s.l.), as does their geology: from limestone and
sandstone in the north to plutonic volcanic rock in the south. The cli-
mate is under oceanic and semi-continental influences, and can be polar
at mountain summits. According to climate normals (1981–2010),
mean monthly temperatures vary from –4 to +12 °C, and mean annual
precipitation varies greatly (700–2300 mm) under complex latitudinal,
longitudinal and elevational gradients (Ferrez et al., 2017). Finally, the
Vosges Mountains cover a large gradient of agricultural practices: 26%
of the grasslands were exclusively mown, 38% were exclusively grazed,
and nitrogen fertilisation ranged from 0 to 277 kg nitrogen/ha (69%
organic (manure applied or directly deposited during grazing) and 31%
synthetic, by mass).

2.2. Attribution of grassland classes

Three studies were performed from 2001 to 2013 (Bayeur et al.,
2013; Collectif, 2006; Launay et al., 2011) of 250 permanent grasslands
on commercial farms (Fig. 1). They focused on the main homogeneous
vegetation community of each grassland in areas 1000–10,000 m2 in
size to avoid effects of paddock size on botanical diversity. One bota-
nical relevé per grassland was performed in the spring (peak biomass
production), identifying all vascular botanical species and their relative
biomass (%) in 25 circles of 0.2 m2 randomly placed in the homo-
geneous vegetation community. Finally, homogeneous vegetation
community were prospected to search for species too rare to be found in
the 25 samples.
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353 species were observed in 250 grassland homogeneous vegeta-
tion communities. The mean (± SD) number of species per community
was 37.6 (± 8.7) [min–max = 16–65]. Thirty species formed 80% of
the total biomass, with a dominance of red fescue Festuca rubra L.
(14.9%), Yorkshire fog Holcus lanatus L. (9.1%), perennial ryegrass
Lolium perenne L. (7.4%) and sweet vernal grass Anthoxanthum odoratum
L. (5.6%). 11 threatened or endangered species were identified (seven
vulnerable, two endangered and two critically endangered) according
to the IUCN Red List, distributed in 30 grasslands. We used this dataset

to attribute an agronomic, functional and phytosociological class to
each of the 250 grasslands.

2.2.1. Agronomic class attribution
Previous studies identified 25 agronomic classes for homogenous

grassland based on species presence and relative biomass (Bayeur et al.,
2013; Collectif, 2006). To this end, they performed multivariate ana-
lyses of grassland composition: Correspondence Analysis (CA) and
Hierarchical Cluster Analysis (HCA) of species presence and Principal

Fig. 1. Location of the 250 botanical relevés performed in the Vosges Mountains, France, from 2001 to 2013 (Bayeur et al., 2013; Collectif, 2006; Launay et al.,
2011). Coordinate system: RGF93-Lambert93.
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Component Analysis (PCA) and HCA of relative biomass. Thus, by
combining CA and PCA, they attributed one agronomic class to each
grassland based on the presence and relative biomass of its botanical
species (Table S1). The number of grasslands per agronomic class
varied from 4 to 24 (Table 1).

This classification is called “agronomic” because its main aim is not
to predict botanical associations, but to use these associations to predict
forage yield and quality.

2.2.2. Functional class attribution
Cruz et al. (2010) attributed one class (A, B, b, C, D and E) to 38 of

the most common French grasses (Poaceae), based on a combination of
functional traits for leaves (dry matter content, specific leaf area,
longevity, resistance to breakage) and plants (flowering date, maximum
height) (Table S2). Then, Cruz et al. (2010) attributed functional classes
to grasslands according to the percentage of each grass class in them.

We adapted their method of functional class attribution to reduce
the number of grassland classes containing only one grassland. If one
grass class represented more than 66% of grassland grasses, the grass-
land was defined as that class (e.g. 76% of grasses of class A, 3% of B
and 21% of C yielded grassland class A), as proposed by Cruz et al.
(2010). Otherwise, grassland was defined by the two main grass classes,
in decreasing order (e.g. 28% of A, 30% of B, 10% of b and 32% of C
yielded grassland class CB).

We then attributed one functional class to each permanent grassland
based on the Cruz et al. (2010) grass classifications and the relative biomass
of these grasses in each grassland. Thus, we attributed 20 functional classes,
with 1–41 grasslands per class (Table 1). The mean (±SD) percentage of
Poaceae in relevés was 64.8 ± 13.5% [min–max = 24.0–96.7%], while
that of other families was 35.2 ± 13.5% [3.3–76.0%].

2.2.3. Phytosociological class attribution
Ferrez et al. (2017) developed a phytosociological classification for

the entire Vosges Mountain range using 1628 relevés performed from
1993 to 2015 following the Braun-Blanquet method. They identified 35
phytosociological classes and selected the 22 of them that had the
highest appearance rates and most important agronomic and ecological
roles in the Vosges Mountains (Table S3). These 22 classes are based on
550 grassland relevés on commercial farms.

Normally, phytosociological classes are attributed directly in the
field. For this study, however, we had to attribute phytosociological

classes to the 250 grasslands a posteriori, from a dataset of existing bo-
tanical relevés. Therefore, we developed a new key to determine phy-
tosociological classes. We used a statistical regression tree to design the
new key, using the complete set of 550 relevés (Ferrez et al., 2017) and
the mvpart package of R software v. 3.4.2 (R Core Team, 2019; Therneau
and Atkinson, 2014). The key, based on 48 botanical genera, determines
phytosociological classes easily. We verified the key’s percentage of good
classification for the dataset (550 grasslands) using a confusion matrix.
According to the confusion matrix, the key had an agreement of 81%.

Using this key and the presence of botanical genus that we observed
in each grassland during the field sampling from 2001 to 2013, we at-
tributed a phytosociological class to each of the 250 studied grasslands.
All of the following analyses were performed for these 250 grasslands.

Thus, we attributed 17 phytosociological classes to the 250 grass-
lands, with 3–61 grasslands per class (Table 1). As 22 classes could have
been attributed at most, five classes were not observed in the set of
grasslands.

2.3. Grassland characteristics

We chose to analyse ecological, agronomic and environmental
characteristics of grasslands. Some of them were ecosystem services,
which are benefits that people obtain from ecosystems (Millennium
Ecosystem Assessment, 2005); however, this definition is still debated,
and goods can be separated from services (Fisher et al., 2009). In ad-
dition, goods and services can be delivered by both the ecosystem and
human practices; for example, grassland yield can be increased by ap-
plying synthetic fertilisers. Because we assessed a variety of goods and
services delivered by the ecosystem and by human practices, we re-
ferred to them collectively as “grassland characteristics”.

We selected nine ecological characteristics to assess taxonomic di-
versity (species richness, family richness, Shannon heterogeneity index,
Simpson diversity index), functional diversity (life form abundance, pol-
linator value, richness and weighted mean of the Ellenberg root system
depth index) and patrimonial functions (oligotrophic species richness,
which can be used as a proxy for species of high ecological value, threaten
by the homogenization and intensification of agricultural management).
We selected three agronomic characteristics to assess actual forage quan-
tity (yield), potential forage quality and quantity (pastoral value) and
phenology (fodder earliness). Finally, we selected four environmental
characteristics to assess the sensitivity of classification to natural and
human factors (Ellenberg humidity and fertility indices, elevation and
management). We used a variety of methods (e.g. calculation, farmer in-
terviews) to determine the 16 characteristics (Table 2, S4 and S5).

The botanical relevés of 250 grasslands and interviews of 52 farmers
were performed in previous studies, which were used to develop the
agronomic classification (Bayeur et al., 2013; Collectif, 2006; Launay
et al., 2011). Botanical relevés allowed the collection of species com-
position and relative biomass, which we entered into the e-FLORA-sys
program (Plantureux and Amiaud, 2009, 2010). This program calcu-
lated information at the vegetation community scale: all ecological
characteristics, as well as pastoral values and life form abundance came
from direct observation and calculation by e-FLORA-sys. Using a
questionnaire to avoid bias, farmers were interviewed to obtain in-
formation about yield and grassland management. Knowledge from the
interviews were extracted to deduce grassland management (“mown”,
“grazed” or a “mixture” of both) and estimate yield from the number
and mass of bales and from livestock stocking rates. On 14 grasslands,
vegetation was sampled and dried to measured yields without inter-
views. Finally, grassland elevation was collected using BD ALTI dataset
and QGIS software (IGN, 2016; QGIS Development Team, 2019).

2.4. Statistical analyses

We first identified the classification or combination of classifications
that predicted each characteristic the best. We then assessed the quality

Table 1
Number of grasslands (n = 250) attributed to 17 phytosociological classes, 25
agronomic classes and 20 functional classes when attributing one phytosocio-
logical, one agronomic and one functional class to each grassland (Tables
S1–S3).

Phytosociological classes Agronomic classes Functional classes

Phy_12 61 BV_02 24 VN_09 14 C 41
Phy_05 25 BV_01 17 VN_07 13 A 40
Phy_01 24 BV_10 13 VN_12 11 AC 38
Phy_02 21 BV_06 12 VN_13 11 CA 31
Phy_11 20 BV_07 11 VN_05 9 AB 26
Phy_20 20 BV_08 11 VN_08 9 Ab 15
Phy_07 14 BV_03 10 VN_14 9 B 10
Phy_09 12 BV_04 10 VN_01 8 BA 8
Phy_25 9 BV_09 10 VN_02 8 Cb 8
Phy_04 8 BV_11 6 VN_06 8 CB 6
Phy_06 8 BV_05 5 VN_03 6 CD 6
Phy_08 8 VN_11 6 BC 5
Phy_16 6 VN_10 5 Bb 4
Phy_18 5 VN_04 4 bB 3
Phy_29 3 DC 3
Phy_30 3 bC 2
Phy_31 3 AE 1

b 1
bA 1
E 1
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of the best models to identify the most polyvalent classification or
combination of classifications for all 16 characteristics. The specific
method used depended on the grassland characteristic.

2.4.1. Modelling each characteristic with classifications
We used statistical model selection to calculate the probability that each

classification alone (phytosociological (P), agronomic (A) or functional (F)),
or a combination of classifications, yielded the best model, using R software.
We modelled each characteristic as a function of each classification or
combinations of classifications. To this end, we generated a model con-
taining the main effects of all the classifications (A + P + F), and we then
derived all possible submodels, including an intercept-only model (null
model) (Burnham and Anderson, 2002; Grueber et al., 2011). We then re-
peated this methodology from a model containing the interactions of all the
classifications (A×P× F). Thus, a set of 12models could be created, based
on classifications alone and combinations of classifications. The sets of
models generated to predict each characteristic are presented in Table S6.

Combining agronomic and phytosociological classifications yielded
116 combinations (e.g. agronomic class BV_01 with phytosociological
class Phy_05 for the same grassland). Similarly, we identified 136
combinations of agronomic and functional classifications, 93 combi-
nations of phytosociological and functional classifications, and 202
combinations of all three classifications. The large number of combi-
nations of classifications demonstrated that classifications differed in
how they classified grasslands.

We modelled each continuous variable (species richness, oligo-
trophic species richness, family richness, Shannon heterogeneity and
Simpson diversity indices, pollinator value, Ellenberg root system depth
richness and root system depth index weighted mean, yield, pastoral
value, Ellenberg humidity and fertility indices and elevation) using
generalised linear models from the gamma family. We modelled each
characteristics by 12 models.

We also fitted life form abundance and fodder earliness using gen-
eralised linear models. However, as we used only one model for life
form (grass, legume and forb) and one model for earliness (early,
middle and late), models were created from the binomial family. Here
again, we modelled each characteristics by 12 models.

Grassland management was a categorical variable, so we created
multinomial logit models using the mlogit package (Croissant, 2015).
As logit models do not support interactions (Croissant, 2015), we fitted
only eight models to grassland management.

2.4.2. Identification of the best model
After creating the models, we selected the best one for each char-

acteristic. Except for grassland management models, the best model was
that with the lowest second-order Akaike Information Criterion (AICc),
calculated using the MuMIn package and R software (Barton, 2018).
Grassland management models were ranked according to the Akaike
Information Criterion (AIC) itself, calculated using the qpcR package
and R software (Spiess, 2014), because AICc cannot be calculated for
logit models (Barton, 2018).

During model selection, an Akaike weight (hereafter, “weight”) is
attributed to each model tested. This weight is the probability that a
given model is the best, and the sum of the weights of all models tested
equals 1 (Symonds and Moussalli, 2011). For each analysis, we com-
pared the weight of each model to those of other models: the closer a
model’s weight is to 1, the better the model is. If only one model had a
high weight (> 0.8), we assumed it was the best, but if several models
had similar weight, we examined them more closely. We verified the
quality of the model selection by ensuring that the null model had a
weight close to zero (Symonds and Moussalli, 2011).

2.4.3. Identification of a reliable polyvalent classification
Best model do not mean good model: the best among poor quality

models remain a poor quality model. Moreover, the best model for a
given characteristic may not be the best model for multiple character-
istics together. To solve these two issues, we calculated the quality of
each best model. First, model quality informed about the accuracy of
each characteristics model. Then we could compare the accuracy of
models selected for several characteristics: if a model would be selected
as best model for several characteristics and its accuracy would be
sufficient, we could assume it is a polyvalent and reliable model.

AIC and AICc indicate model quality, but as they are relative to the
dataset for each characteristic we could not use them to compare best
models for multiple characteristics (Burnham and Anderson, 2002). We
used each best model to predict all 16 characteristics and calculated a
goodness of fit among the predictions using pseudo-R2, because R2

cannot be calculated for generalised linear models (Tjur, 2009).
For generalised linear models for the gamma family, we calculated

Cox and Snell pseudo-R2 (Cox and Snell, 1989), which is the easiest to
use because it expresses R2 in terms of log-likelihood (Tjur, 2009).
Because the Cox and Snell pseudo-R2 is not optimal for generalised
linear models from the binomial family or for multinomial logit models

Table 2
Methods for determining the 16 characteristics studied for permanent grasslands, in ecological, agronomic and environmental categories.

Characteristic Determination method

Ecological Species richness Number of botanical species observed in the grassland
Oligotrophic species richness Number of botanical species observed in the grassland with an Ellenberg nitrogen index of 1–3
Family richness Number of botanical families observed in the grassland
Shannon heterogeneity index -Σ(Yk × log2 Yk), where Yk is the relative biomass of species k (0 < Yk ≤ 1)
Simpson diversity index 1 − (Σ Yk2), where Yk is the relative biomass of species k (0 < Yk ≤ 1)
Pollinator value Relative biomass (% of total biomass) of entomophilous botanical species observed in the grassland
Ellenberg root system depth index
richness

Number of different Ellenberg root system depth indices observed in the grassland

Ellenberg root system depth index
weighted mean

Σ(Yk × individual root index), where Yk is the relative biomass of species k (0 < Yk ≤ 1)

Life form abundance Relative biomass (% of total biomass) of each life form: grasses (Cyperaceae, Juncaceae, Liliaceae , Poaceae), legumes
(Fabaceae) and forbs

Agronomic Yield Estimated from the number of bales and livestock stocking rate, or measured in the field
Pastoral value Σ(Yk × individual pastoral value), where Yk is the relative biomass of species k (0 < Yk ≤ 100). For each species,

pastoral value is estimated by expert opinion from potential yield, nutritive value, appetence and digestibility (Daget
and Poissonet, 1971)

Fodder earliness Relative biomass (% of total biomass) of early, middle and late species, according to Cruz et al. (2010) and Theau
et al. (2017)

Environmental Ellenberg humidity index Σ(Yk × individual humidity index), where Yk is the relative biomass of species k (0 < Yk ≤ 100)
Ellenberg fertility index Σ(Yk × individual fertility index), where Yk is the relative biomass of species k (0 < Yk ≤ 100)
Elevation Mean elevation of the grassland
Management “Mown”, “grazed”, or a “mixture” of both, obtained from farmer interviews
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(Cox and Snell, 1989), we calculated McFadden’s pseudo-R2 for these
models, which is also based on the likelihood of the model (Hoetker,
2007). We used the DescTools package and R software to calculate
pseudo-R2 (Signorell, 2017). Finally, we calculated generalised var-
iance-inflation factors to check for collinearity among models, using the
car package (Fox and Sanford, 2011). We assumed that models with
pseudo-R2 > 0.5 had a satisfactory goodness of fit.

3. Results

3.1. Identification of the best classification

The model with the highest weight for 15 of the 16 grassland
characteristics contained one or more classifications, as root system
depth richness was predicted best by the null model (Fig. 2). Among
these 15 models, four of them had a weak weight< 0.8 and required a
closer look to identified best models: Shannon heterogeneity index
(0.66), pollinator value (0.52), Ellenberg root system index weighted
mean (0.73) and Ellenberg fertility index (0.59).

One classification alone was sufficient to predict four characteristics
the best. Three characteristics were predicted best by agronomic clas-
sification alone (A): yield (agronomic), grassland management (en-
vironmental) and elevation (environmental). One characteristic was
predicted best by phytosociological classification alone (P): species
richness (ecological).

For two characteristics, the model with the highest weight con-
tained only one classification, but the weight was not high enough to
select it as the best model. For Shannon heterogeneity index, phytoso-
ciological classification (P) alone had the highest weight (0.66), but it
did not differ enough from the second highest weight (0.25), which was
for the main effects of phytosociological and functional classifications
(P + F). Similarly, for pollinator value, weights of agronomic classifi-
cation (A) and the null model (0.52 and 0.35, respectively) were too
similar to identify one best model.

The main effects of two or three classifications predicted six char-
acteristics the best: agronomic and phytosociological (A + P) for family
richness; agronomic and functional (A + F) for Ellenberg humidity
index; phytosociological and functional (P + F) for Simpson

heterogeneity index and pastoral value; and all three classifications
(A + P + F) for fodder earliness. Ellenberg root system index weighted
mean highest weight was associated to the P + F model, but was< 0.8.
However, the second highest weight was different enough to assume
Ellenberg root system index weighted mean was best model by the main
effects of phytosociological and functional classifications.

On the other hand, weights of the A + P + F and A + P models for
the Ellenberg fertility index were too similar (0.59 and 0.41, respec-
tively), we could not identify which one was best. Finally, two best
models contained an interaction: that between agronomic and phyto-
sociological classifications (A × P) for life form abundance, and be-
tween phytosociological and functional classifications (P × F) for oli-
gotrophic species richness.

The highest weights equalled 1.0 for seven characteristics, 0.7–1.0
for six characteristics, and less than 0.7 for the Shannon heterogeneity
index, pollinator value and Ellenberg fertility index. Null model weights
equalled zero, except for those for pollinator value (0.35) and root
system depth richness (1.0).

3.2. Identification of a reliable and polyvalent classification

The goodness of fit (pseudo-R2) varied greatly among the best
models for characteristics (0.20–0.88) (Fig. 2). The goodness of fit of
the model for the Ellenberg root system index weighted mean equalled
zero, due to the selection of the null model. Models for agronomic and
environmental characteristics had high weights and/or quality. In
contrast, most models for ecological characteristics had low quality,
except for life form abundance, oligotrophic species richness and, to a
lesser extent, family richness (pseudo-R2 = 0.87, 0.83 and 0.54, re-
spectively). We identified ten grassland characteristics whose models
had goodness of fit > 0.5 (Fig. 3): oligotrophic species richness, family
richness and life form abundance (ecological); yield, pastoral value and
fodder earliness (agronomic); and Ellenberg indices for fertility and
humidity, elevation and management (environmental). Unlike these ten
grassland characteristics, the other six, all ecological, had best models
of low quality despite having high weights: species richness, Shannon
heterogeneity index, Simpson diversity index, pollinator value and
richness and weighted mean of Ellenberg root system depth

Fig. 2. Akaike weights and goodness of fit (pseudo-R2) of the 16 grassland characteristics modelled using agronomic (A), phytosociological (P) or functional (F)
classification, the main effects of two or all three of them (A + P, A + F, P + F and A + P + F), their interactions (A × P, A × F, P × F and A × P × F) and a null
model (Null). The term “n.c.” (“not considered”) indicates characteristics that could not be modelled with interactions. The goodness of fit shown is that of the model
with the highest weight for each grassland characteristic.
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We could not identify one polyvalent and reliable classification or
combination of classifications that could predict ecological, agronomic
and environmental characteristics well. Only agronomic classification
could predict characteristics the best when alone, with high quality
models. Moreover, most of the characteristics predicted well were
predicted totally or partially by agronomic classification. The combi-
nation of phytosociological and functional classifications predicted
oligotrophic species richness and pastoral value well.

4. Discussion

4.1. Prediction of grassland characteristics

4.1.1. Quality of prediction models
Four of the six characteristics whose models had goodness of fit<0.5

involved species or trait richness and equitability. This poor prediction of
ecological characteristics is not surprising for agronomic and functional
classifications, which were not designed to predict them and rely mainly
on relative biomass rather than presence of species. The best models for
each of these characteristics are built in part on phytosociological clas-
sification, except those for pollinator value and Ellenberg root system
index weighted mean. However, the poor quality of these ecological
characteristics highlights the lack of a relationship between ecological
characteristics and phytosociological classification, which is more sur-
prising. While grasslands in the same phytosociological class have species
in common (a “characteristic combination”), they also have some dif-
ferent species among them, which gives them different values of species
richness and may help explain our result. Bias in relevés could also be a
reason: Chytrý (2001) showed that botanists increase the area sampled in
species-poor grasslands to increase the number of species, which could
bias attribution of class and calculation of richness.

Despite its common use and importance for estimating total biodi-
versity, species richness is not a key characteristic to predict because of

its high variability in similar grasslands (Brunbjerg et al., 2018). These
limits to biodiversity measurements have led researchers and decision-
makers to use diversity indices such as the Shannon heterogeneity index
and Simpson diversity index (de Bello et al., 2010; Mauchamp et al.,
2014). In our study, we could not identify models that predicted di-
versity indices well, but ecological indices were predicted best by
phytosociological classification alone or a combination of phytosocio-
logical and functional classifications. These indices provide different
types of information: the Shannon heterogeneity index describes species
equitability, while the Simpson diversity index describes both species
equitability and richness. One way to predict grassland plant diversity
well could be to use disturbance intensity: Vujnovic et al. (2002)
showed that intermediate disturbance by grazing, trampling or soil
management maximised grassland biodiversity, while Rodríguez-Rojo
et al. (2017) observed that management intensity had more influence
on grassland biodiversity than management practices. However, bio-
diversity measurement, through species richness or ecological indices,
is not necessary a useful indicator. Indeed, these measurements do not
take into account vegetation characteristics as proportion of rare spe-
cies, which is not correlated to total richness (Pykälä et al., 2005).
Assessment of biodiversity should be implemented with proxy for spe-
cies of high ecological value like oligotrophic species richness (Michaud
et al., 2012; Muller, 2002). In the present study, oligotrophic species
richness was predicted best by the combination of phytosociological
and functional classifications.

Among ecological characteristics, only pollinator value and the
weighted mean of Ellenberg root system depth needed species relative
biomass in their calculations. However, they are based on traits (pol-
linator attractiveness traits and root system depth, respectively) not
included in the functional classification studied nor in other classifi-
cations. Agronomic classification has been used to estimate pollinator
value (Bayeur et al., 2013; Hulin et al., 2011; Launay et al., 2011). Our
study confirms that agronomic classification predicts pollinator value

Fig. 3. Representation of which phytosociological,
agronomic and functional classifications (or combi-
nations of them) were needed to predict ten grass-
land characteristics well (goodness of fit > 0.5).
Red, green and blue text identify ecological, agro-
nomic and environmental characteristics, respec-
tively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the
web version of this article.)
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the best, but its low model quality (weight = 0.52, pseudo-R2 = 0.20)
raises questions about the reliability of the prediction. Beyond our
study, phytosociological classification may help predict pollinator
species or traits, which are particularly related to flower diversity
(Hegland and Totland, 2005; Warzecha et al., 2017). However, en-
tomophilous botanical species relative biomass assesses a potential
pollinator value at grassland scale. To assess a real pollinator service,
flowering time and cutting/grazing dates should be studied because
they express the real abundance of flowers (Kleijn et al., 2001). The
landscape also influences pollinator diversity and abundance strongly,
but it is not included in grassland classifications (Sutter et al., 2017).
Finally, our modelling of root system depth is similar to the study of
Oram et al. (2018), which found that mean root system depth was re-
lated to other characteristics but root system depth richness was not.

4.1.2. Grassland characteristics predicted by one classification alone
Three grassland characteristics – elevation, management and yield –

were predicted best by agronomic classification alone, which was the
only classification that could predict grassland characteristics well by
itself (Fig. 3). Management and elevation predict species composition
well (Rodríguez-Rojo et al., 2017; van Oijen et al., 2018), and agro-
nomic classification predicted management and elevation well with
high weights and model qualities. We can assume that botanical asso-
ciations developed from taxonomic relative biomass are good indicators
of elevation and might be indicators of climate more generally.

Prediction of yield is crucial, especially for farmers. As agronomic
classifications are developed mainly to predict agronomic character-
istics, we expected a strong relationship between yield and agronomic
classification. Functional classifications are also developed to predict
grassland yields, and this ability was confirmed by Lavorel and Garnier
(2002), who identified strong relationships between nutrient-response
traits and traits determining yields. Plasticity in trait expression (at the
species scale) and trait co-occurrence (at the community scale) of
grasses and forbs need to be better understood to improve predictions of
functional classification (Roscher et al., 2018). Yield can be estimated
easily using Ellenberg fertility index (Hill and Carey, 1997) or by more
complex models based on functional traits, life form abundance
(Michaud et al., 2015) and phytosociological classes (Magiera et al.,
2017). Finally, field measurement also estimates grassland yield well
but requires more time and equipment than using grassland classifica-
tions or Ellenberg indices (Ni, 2004).

4.1.3. Combining classifications: a solution?
To our knowledge, our study is the first to compare three classifi-

cation approaches using the same relevés. Carrère et al. (2012) created
tool based on phytosociological, agronomic and functional classifica-
tions but did not compare the quality of predictions provided by each
classification to those of the combination of two or three classifications.
Macedo et al. (2010) compared the prediction abilities of three classi-
fications but focused only on predicting ecological characteristics of
dune communities.

In our study, seven of the characteristics studied were predicted
better by combinations of classifications than by one classification
alone (Fig. 3): oligotrophic species richness, family richness and life
form abundance (ecological), pastoral value and fodder earliness
(agronomic) and Ellenberg humidity and fertility indices (environ-
mental). Notably, among the goodness of fit> 0.8, three out of four
models required combination of classifications: life form abundance
(0.87), oligotrophic species richness (0.83) and Ellenberg fertility index
(0.8). Moreover, despite its weak prediction capacities when used
alone, phytosociological classification is part of these three best models.

Both fertility and humidity indices were predicted well (high weight
and goodness of fit) by combining classifications. Humidity and fertility
indices have been linked to elevation (de Almeida Campos Cordeiro and
Neri, 2019; Pittarello et al., 2018; Sevruk, 1997) but also to taxonomic
(Critchley et al., 2002; Melts et al., 2018; Wang et al., 2007) and

functional (Čop et al., 2009; Schellberg, 1999; Suding et al., 2005) di-
versity. We also used the fertility index to calculate oligotrophic species
richness. However, fertility needed all three classifications to be pre-
dicted well, while oligotrophic species richness needed only phytoso-
ciological and functional classifications and was predicted better. This
difference could have been due to the method used: the fertility index is
based on relative biomass, unlike oligotrophic species richness. Ellen-
berg fertility index is influenced by fertilizer application, but is also
dependant of soil properties like the cation exchange capacity. Thus,
the prediction of Ellenberg fertility index and oligotrophic species
richness can bring information about presence of species of high eco-
logical value, but cannot be used to assess the impact of fertilization at
scales larger than grassland community.

Life form abundance, as well as root system depth, was not included
in previous classifications. The latter was not predicted well, but the life
form abundance was predicted well by an interaction between classi-
fications (A × P). This result is particularly interesting because it shows
that grassland classifications can predict characteristics beyond those
for which they were developed. Moreover, family richness was pre-
dicted best by a similar combination of classifications: the main effects
of agronomic and phytosociological classifications (A + P). These
characteristics are related by the method of calculation. Indeed, life
forms are based on botanical families: legumes belong to Fabaceae,
while grasses belong to Cyperaceae, Juncaceae, Liliaceae and Poaceae.
This result could highlight a correlation between richness and relative
biomass of families. Grassland management influences life form abun-
dance strongly: mowing increases grass and forb relative biomass, while
grazing selects rosettes and creeping plants (Gaujour et al., 2012; Lanta
et al., 2009). However, intensification also selects rosettes and creeping
plants (Gaujour et al., 2012), and livestock type also has a strong in-
fluence on life form abundance (Tóth et al., 2018). These previous
studies show that knowledge about grassland management could im-
prove prediction of life form abundance; however, Craine et al. (2001)
identified correlations between leaf traits and life form but no corre-
lation between intensification and life form. The prediction of life form
abundance can be useful for agronomists and naturalists. Indeed,
grassland with highest life form diversity produce higher yields
(Bullock et al., 2006), and allow heavier livestock live weight than
grassland with poor life form diversity (Grace et al., 2019). In the
present study, the goodness of fit of life form abundance (0.87) was
higher than goodness of fit of yield (0.51) and fodder quality (0.60).
Finally, life form abundance also determines the resistance of botanical
species to drought: life form of weak abundance have more prob-
abilities to disappear (Tilman and Haddi, 1992). Thus, life form abun-
dance could be an important characteristic for naturalist who want to
assess the risk of extinction of grassland botanical species.

It was particularly surprising that phytosociological and functional
classifications combined (P + F) predicted pastoral value the best,
because i) yield, part of the pastoral value equation, is predicted well by
agronomic classification, and ii) calculating the pastoral value requires
the pastoral value and relative biomass of each species, which is pro-
vided by agronomic classification (Daget and Poissonet, 1971). Func-
tional traits (Tasset et al., 2019) and phytosociology (Petrovic et al.,
2013) can be used to predict forage quality, but our result shows that
combining them improves predictions. Phytosociology alone may not
be sufficient to predict pastoral value due to the inclusion of different
facies in the same phytosociological class (Bagella and Roggero, 2004).
Prediction of pastoral value could be improved by using Ellenberg
fertility index and environmental indicators such as elevation and slope
(Bagella and Roggero, 2004; Pittarello et al., 2018).

Forage earliness is key information in grassland management, be-
cause peak forage quality is related to plant phenology (Pontes et al.,
2007). Moreover, coupled with cutting or grazing dates, earliness could
also be used to assess pollination service (Kleijn et al., 2001). Climate is
the main factor that influences flowering time: temperature
(Kudernatsch et al., 2008) and, to a lesser extent, precipitation

G. Mesbahi, et al. Ecological Indicators 110 (2020) 105956

8



(Hovenden et al., 2008) create annual variability. We used degree days
to be free from annual temperature variability. Generally, alpine ve-
getation needs fewer heat units to initiate flowering (Heide, 1994),
which could create a fodder earliness gradient according to elevation.
Management, expressed indirectly through botanical composition,
creates differences in earliness of French grasslands, but differences are
also perceptible among species from the same community (Ansquer
et al., 2009). We conclude that the three classifications are essential to
predict fodder earliness: while the functional classification is based in
part on grass earliness, phytosociological and agronomic classifications
could provide information about other species.

4.2. Limits of the study and perspectives

It may be possible to extrapolate results of this study. From the
viewpoint of environmental conditions, our study focused on 250 per-
manent grasslands of the French Vosges Mountains but covered wide
gradients of climates, elevations, soils and agricultural practices. From
the viewpoint of vegetation, we found 17 phytosociological classes out
of the 35 identified by botanists in the Vosges Mountains (Ferrez et al.,
2017). However, these 17 classes are the most representative of com-
mercial farms according to expert opinion and can be found in many
other lowlands and low-elevation mountains in western Europe. Fi-
nally, the functional classification studied can also be used in a wide
range of grasslands, as it is representative of western-European grass-
land Poaceae (Cruz et al., 2010).

All grassland classifications are based in part on arbitrary choices, ei-
ther of the classification criteria (here, taxonomic richness, taxonomic
relative biomass, or functional relative biomass) or the number of grass-
land classes. The method used to attribute functional classes provided
quick and easy classification, but it can also be restrictive and attribute
different functional classes to similar grasslands. This method also creates
several functional classes containing few grasslands: eight classes con-
tained less than five grasslands. Moreover, the functional classification
focused only on Poaceae, even though other families represent a relatively
large percentage of each grassland (mean ± SD = 35 ± 14%), which
could lead to lower accuracy in measuring response traits if Poaceae re-
spond differently to disturbances than other plant families. A new func-
tional classification based not only on Poaceae but also on dicotyledonous
species may improve prediction abilities of functional classification.
Finally, including new classification approaches should also improve
knowledge about predicting grassland characteristics. Phytosociology di-
verges into two approaches: Braun-Blanquet and, more recently, numer-
ical (Dengler et al., 2008). In the latter, relevés are grouped into classes
using statistics, based on presence/absence (as in the Braun-Blanquet ap-
proach) or relative biomass (as in agronomic classifications). Classes are
not phytosociological classes from the literature but are instead free from
the subjective concept of the vegetation unit.

Of the 16 characteristics studied, five were calculated using
Ellenberg indices, whose use may raise some questions. Indeed, some
indices are estimated rather than measured, species response to the
environment depends on location and plant stage, and the strength of
correlations between indices and field measurements diverges among
studies (Diekmann, 2003; Schaffers and Sýkora, 2000). Nevertheless,
Ellenberg weighted mean indices are considered reliable (Diekmann,
2003).

In a more extensive study, we could have analysed the ability of
grassland classifications to predict other characteristics. Classifications
have been used to predict organoleptic characteristics of animal pro-
ducts (Diquélou et al., 2003) and soil carbon stocks (Hulin et al., 2011),
but other services could be studied, such as maintenance of genetic
diversity, regulation of water flows and landscape heritage (D’Ottavio
et al., 2017). Moreover, a more complete dataset of grassland char-
acteristics could improve statistical analyses: the lack of homogeneity of
grasslands per class might induce statistical bias, and it is important to
assess the quality of new models on an external dataset.

Our study raises questions about the use of phytosociological clas-
sification alone to identify habitats of interest in Europe. Indeed, we
demonstrated that ecological characteristics remain difficult to predict
and, above all, that phytosociological classification alone does not
predict grassland characteristics well. However, identification of eco-
logical characteristics could lead to conservation of key grasslands,
while identification of agronomic characteristics could improve dis-
tribution of economic incentives for ecologically valuable grasslands.
Characteristics can be predicted more accurately by combining classi-
fications, as in this study, but also by using other methods. Indicator
species or life traits such as life forms or flower colour are also easy to
use but might be less accurate or more time consuming (Arnold et al.,
2009; Ellenberg et al., 1992). Finally, models can consider soil and
weather variability, but such models are often difficult for non-specia-
lists to use and do not predict agronomic and ecological characteristics
at the same time (van Oijen et al., 2018).

5. Conclusion

Our study focused on the ability of three classification approaches to
predict 16 grassland characteristics. Our results show that agronomic
classification has great potential to predict three agronomic and en-
vironmental characteristics, which demonstrates that it meets the needs
of farmers and agronomists well. Although phytosociological classifi-
cation is designed to assess habitat conservation, it failed to predict the
studied ecological characteristics well. Functional classification appears
promising, but it was developed more recently and may suffer from
knowledge gaps. As ecological characteristics remain especially difficult
to predict, naturalists and policy makers should use tools other than
phytosociological classification alone to predict them. Indicator species
or life traits such as life forms or flower colour are also easy to use but
might be more time consuming than a phytosociological relevé. To
identify trade-offs between economics and ecology, it may be important
to combine grassland classifications: our results show that combinations
of phytosociological, agronomic and/or functional classification could
accurately predict seven ecological, agronomic and environmental
characteristics. Finally, models may improve prediction of character-
istics: they can consider soil and weather variability but are often dif-
ficult for non-specialists to use and do not predict agronomic and eco-
logical characteristics at the same time.
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